Data security using unsupervised learning and explanations

ثبت نشده
چکیده

Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment using artificial intelligence techniques. The system applies unsupervised clustering techniques to discover hidden patterns and extract abnormal device behaviours by clustering devices in groups that share similar vulnerabilities. The proposed improvement consists in extracting a symbolic explanation for each cluster to help security analysts to understand the clustering solution using network security lexicon. Source URL: https://www.iiia.csic.es/en/node/55391 Links [1] https://www.iiia.csic.es/en/staff/guiomar-corral [2] https://www.iiia.csic.es/en/staff/eva-armengol [3] https://www.iiia.csic.es/en/staff/albert-fornells [4] https://www.iiia.csic.es/en/staff/elisabet-golobardes

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Security Analysis Using Unsupervised Learning and Explanations

Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment usin...

متن کامل

Data security using unsupervised learning and explanations

Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment usin...

متن کامل

Data security using unsupervised learning and explanations

Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment usin...

متن کامل

Explanations of unsupervised learning clustering applied to data security analysis

Network security tests should be periodically conducted to detect vulnerabilities before they are exploited. However, analysis of testing results is resource intensive with many data and requires expertise because it is an unsupervised domain. This paper presents how to automate and improve this analysis through the identification and explanation of device groups with similar vulnerabilities. C...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017