Data security using unsupervised learning and explanations
ثبت نشده
چکیده
Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment using artificial intelligence techniques. The system applies unsupervised clustering techniques to discover hidden patterns and extract abnormal device behaviours by clustering devices in groups that share similar vulnerabilities. The proposed improvement consists in extracting a symbolic explanation for each cluster to help security analysts to understand the clustering solution using network security lexicon. Source URL: https://www.iiia.csic.es/en/node/55391 Links [1] https://www.iiia.csic.es/en/staff/guiomar-corral [2] https://www.iiia.csic.es/en/staff/eva-armengol [3] https://www.iiia.csic.es/en/staff/albert-fornells [4] https://www.iiia.csic.es/en/staff/elisabet-golobardes
منابع مشابه
Data Security Analysis Using Unsupervised Learning and Explanations
Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment usin...
متن کاملData security using unsupervised learning and explanations
Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment usin...
متن کاملData security using unsupervised learning and explanations
Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment usin...
متن کاملExplanations of unsupervised learning clustering applied to data security analysis
Network security tests should be periodically conducted to detect vulnerabilities before they are exploited. However, analysis of testing results is resource intensive with many data and requires expertise because it is an unsupervised domain. This paper presents how to automate and improve this analysis through the identification and explanation of device groups with similar vulnerabilities. C...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017